Relativistic integral equations with compact operator.—I.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Path Integral for Relativistic Equations of Motion

A c-number path integral representation is given for the solution of the KleinGordon and the Dirac equations. The trajectories of the path integral are rendered differentiable by the relativistic corrections. The nonrelativistic limit is briefly discussed from the point of view of the renormalization group.

متن کامل

Compact Numerical Quadrature Formulas for Hypersingular Integrals and Integral Equations

In the first part of this work, we derive compact numerical quadrature formulas for finite-range integrals I [f ] = ∫ b a f (x) dx, where f (x)= g(x)|x − t |β , β being real. Depending on the value of β, these integrals are defined either in the regular sense or in the sense of Hadamard finite part. Assuming that g ∈ C∞[a, b], or g ∈ C∞(a, b) but can have arbitrary algebraic singularities at x ...

متن کامل

COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS

In this paper it is shown that the use of‎ ‎uniform meshes leads to optimal convergence rates provided that‎ ‎the analytical solutions of a particular class of‎ ‎Fredholm-Volterra integral equations (FVIEs) are smooth‎.

متن کامل

A Generalized Collectively Compact Operator Theory with an Application to Integral Equations on Unbounded Domains

In this paper a generalization of collectively compact operator theory in Banach spaces is developed. A feature of the new theory is that the operators involved are no longer required to be compact in the norm topology. Instead it is required that the image of a bounded set under the operator family is sequentially compact in a weaker topology. As an application, the theory developed is used to...

متن کامل

Integral Equations with Contrasting Kernels

0 C(t, s)x(s)ds with sharply contrasting kernels typified by C∗(t, s) = ln(e + (t − s)) and D∗(t, s) = [1 + (t − s)]. The kernel assigns a weight to x(s) and these kernels have exactly opposite effects of weighting. Each type is well represented in the literature. Our first project is to show that for a ∈ L[0,∞), then solutions are largely indistinguishable regardless of which kernel is used. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Il Nuovo Cimento A

سال: 1969

ISSN: 0369-3546,1826-9869

DOI: 10.1007/bf02823306